Quickstart: Launch Workloads with NVIDIA Dynamic MIG¶
Introduction¶
A single GPU has a significant amount of memory. Ranging from a couple of gigabytes in older generations and up to 80GB per GPU in the later models of the latest NVIDIA GPU technology. A single GPU also has a vast amount of computing power.
This amount of memory and computing power is important for processing large amounts of data, such as in training deep learning models. However, there are quite a few applications that do not need this power. Examples can be inference workloads and the model-creation phase. It would thus be convenient if we could divide up a GPU between various workloads, thus achieving better GPU utilization.
Run:ai provides two alternatives for splitting GPUs: Fractions and Dynamic MIG allocation. The focus of this article is Dynamic MIG allocation. A detailed explanation of the two Run:ai offerings can be found here.
Prerequisites¶
To complete this Quickstart you must have:
- Run:ai software installed on your Kubernetes cluster. See: Installing Run:ai on a Kubernetes Cluster
- Run:ai CLI installed on your machine. See: Installing the Run:ai Command-Line Interface
- A machine with a single available NVIDIA A100 GPU. This can be achieved by allocating filler workloads to the other GPUs on the node, or by using Google Cloud which allows for the creation of a virtual node with a single A100 GPU.
Step by Step Walkthrough¶
Setup¶
- Login to the Projects area of the Run:ai user interface.
- Allocate 2 GPUs to the Project.
- Mark the node as a dynamic MIG node as described here.
Run an Inference Workload - Single Replica¶
At the GPU node level, run: nvidia-smi
:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.91.03 Driver Version: 460.91.03 CUDA Version: 11.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 A100-SXM4-40GB Off | 00000000:00:04.0 Off | On |
| N/A 32C P0 42W / 400W | 0MiB / 40536MiB | N/A Default |
| | | Enabled |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
| GPU GI CI MIG | Memory-Usage | Vol| Shared |
| ID ID Dev | BAR1-Usage | SM Unc| CE ENC DEC OFA JPG|
| | | ECC| |
|==================+======================+===========+=======================|
| No MIG devices found |
+-----------------------------------------------------------------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
In the highlighted text above, note that:
- MIG is enabled (if
Enabled
has a star next to it, you need to reboot your machine). - The GPU is not yet divided into devices.
At the command-line run:
runai config project team-a
runai submit mig1 -i gcr.io/run-ai-demo/quickstart-cuda --gpu-memory 10GB
runai submit mig2 -i gcr.io/run-ai-demo/quickstart-cuda --mig-profile 2g.10gb
runai submit mig3 -i gcr.io/run-ai-demo/quickstart-cuda --mig-profile 2g.10gb
We used two different methods to create MIG partitions:
- Stating the amount of GPU memory we require
- Requiring a partition of explicit size using NVIDIA terminology.
Both methods achieve the same effect. They result in three MIG partitions of 10GB each. You can verify that by running nvidia-smi
, at the GPU node level:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.91.03 Driver Version: 460.91.03 CUDA Version: 11.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 A100-SXM4-40GB Off | 00000000:00:04.0 Off | On |
| N/A 47C P0 194W / 400W | 27254MiB / 40536MiB | N/A Default |
| | | Enabled |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
| GPU GI CI MIG | Memory-Usage | Vol| Shared |
| ID ID Dev | BAR1-Usage | SM Unc| CE ENC DEC OFA JPG|
| | | ECC| |
|==================+======================+===========+=======================|
| 0 3 0 0 | 9118MiB / 9984MiB | 28 0 | 2 0 1 0 0 |
| | 4MiB / 16383MiB | | |
+------------------+----------------------+-----------+-----------------------+
| 0 4 0 1 | 9118MiB / 9984MiB | 28 0 | 2 0 1 0 0 |
| | 4MiB / 16383MiB | | |
+------------------+----------------------+-----------+-----------------------+
| 0 5 0 2 | 9016MiB / 9984MiB | 28 0 | 2 0 1 0 0 |
| | 2MiB / 16383MiB | | |
+------------------+----------------------+-----------+-----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 3 0 142213 C ./quickstart 9111MiB |
| 0 4 0 146799 C ./quickstart 9111MiB |
| 0 5 0 132219 C ./quickstart 9009MiB |
+-----------------------------------------------------------------------------+
- Highlighted above is a list of 3 MIG devices, each 10GB large. Total of 30GB (out of the 40GB on the GPU)
- You can also run the same command inside one of the containers:
runai exec mig1 nvidia-smi
. This will show a single device (the only one that the container sees from its point of view). - Run:
runai list
to see the 3 jobs inRunning
state.
We now want to allocate an interactive job with 20GB. Interactive jobs take precedence over the default training jobs:
or similarly,Using runai list
and nvidia-smi
on the host machine, you can see that:
- One training job is preempted, and its device is deleted.
- The new, interactive job starts running.